Teorema di Robinson

Il Teorema di Robinson (1956), anche detto teorema della somma di teorie, ci dice in che modo due teorie possano unirsi. Stabilisce, cioè, le condizioni affinché due teorie differenti (ma che abbiano almeno qualcosa in comune) possano unirsi per formare un’unica teoria unificata. Perché è importante questo teorema? Beh, se si pensa che la fisica quantistica (o, più specificatamente: la teoria della relatività e la meccanica quantistica) non è altro che un insieme di teorie matematiche fra loro non necessariamente non contraddittorie, allora il teorema di Robinson ci indica la strada da percorrere affinché si possa giungere ad una teoria del tutto (o teoria fisica unificata).
Veniamo ora nel vivo del teorema:

Enunciato: T e T* sono consistenti se e solo se sono compatibili. Dove compatibili significa che: (I) T è consistente; (II) T* è consistente; (III) non esiste una formula C tale che il linguaggio in cui è formulata C è incluso o uguale all’intersezione del linguaggio di T con il linguaggio di T* e: T dimostra C e T* dimostra ¬C.

[Ho usato il segno ¬ per indicare la negazione di C, quindi ¬C equivale a non-C].
Spieghiamo meglio cosa significa l’enunciato. Due teorie differenti, che chiamiamo T e T*, sono non contraddittorie (ossia, consistenti fra loro) soltanto quando esse sono compatibili. Ovviamente se le due teorie sono inconsistenti (ossia si contraddicono a vicenda), allora non sono compatibili: se una teoria dimostra A ed una dimostra non-A, allora A sarà sia vera sia falsa nella loro somma. Ma questo violerebbe il principio di non contraddizione, quindi è assurdo che si verifichi una tale evenienza. Per essere, invece, compatibili le due teorie devono essere entrambe, se considerate singolarmente, non contraddittorie (ossia non si dà il caso che T dimostri B e non-B,  e lo stesso vale per T*). In più, per essere sommate, bisogna che esse abbiano almeno qualcosa in comune nel loro linguaggio (ossia nel loro apparato concettuale diremmo in termini meno formali). Questo è un requisito necessario, altrimenti potremmo sommare una teoria che parla di atomi ed una che parla di Dio. Ma così confonderemmo una teoria scientifica con una teologica! Noi invece vogliamo restare in un campo ristretto, sicché si possano sommare teorie fra loro correlate.
Si noti, poi, che le due teorie sono consistenti fra loro se e solo se i loro assiomi di partenza sono consistenti.
Possiamo riscrivere (III) così:

  • (III)*   Esiste una C tale che L(C) ⊆ [L(T) ∩ L(T*)].

Bene, bell’enunciato sicuramente. Ma è vero o falso? Per scoprirlo è necessaria una dimostrazione dell’enunciato. La dimostrazione si conduce sciogliendo il “se e solo se” nei due versi, ossia mostrando che il primo termine implica il secondo e, viceversa, che anche il secondo implica il primo.

Dimostrazione:
Dim 1: Se T e T* sono consistenti, allora sono compatibili. Questo verso della doppia implicazione è banale: se T e T* sono entrambe consistenti allora le condizioni (I) e (II) valgono. Quindi T non dimostra contraddizioni e neanche T* ne dimostra. Supponiamo ora che per assurdo le due teorie non siano compatibili, allora ciò significa che T+T* dimostra una contraddizione. Ma questo vuol dire che una fra T e T* è inconsistente! Ma non avevamo supposto fossero entrambe consistenti? L’ipotesi che due teorie sono consistenti ma incompatibili ci conduce dunque all’assurdo, quindi è falsa. Sarà allora vero che se due teorie sono consistenti allora esse sono compatibili.
Dim 2: Se T e T* sono compatibili, allora T e T* sono consistenti. Si procede con una dimostrazione per assurdo, cioè assumiamo che le due teorie siano compatibili ma che non siano consistenti.
(Userò il segno ⇒ per indicare che le due teorie dimostrano una certa proposizione. Userò poi il segno ⊥ per indicare una contraddizione e simbolizza l’assunzione “le due teorie, messe insieme, sono contraddittorie”; in altre parole equivale al fatto che si sta dimostrando l’enunciato per assurdo. Userò il segno ≡ per indicare che due forme sono equivalenti).
(o) T e T* sono compatibili.
(1) T + T* ⇒ ⊥
(2) Siano A gli assiomi di T e B gli assiomi di T*.
(3) A, B ⇒ ⊥
(4) ⇒ A→[B→(⊥)]   [(3) e (4) sono equivalenti; ho solo riscritto (3)]
(5) ⇒ A→ ¬B            [Se B implica l’assurdo, allora è vera non-B]
(5.1) A→¬B è vera anche se è falso A, cioè ¬A è vero, ed è vero ¬B.
(6) Dato (5.1), si danno i tre seguenti casi:
(6.1)  ⇒¬A ma per (2)   T ⇒ A & ¬A.
(6.2)  ⇒ ¬B ma per (2)  T* ⇒ B & ¬B.
(6.3)  Esiste una C tale che L(C) ⊆ [L(T) ∩ L(T*)] e dunque:
          (6.3.1) [⇒A → C] ≡ [T ⇒ C].
          (6.3.2) [⇒ C → ¬B] ≡ [⇒ B → ¬C] ≡ [T* ⇒ ¬C]

QED

Poiché i sottocasi di (6) hanno condotto all’assurdo — i primi due perché sono in contraddizione con gli assiomi e l’ultimo, coi rispettivi altri due suoi sottocasi, perché dice che le due teorie T e T* dimostrano rispettivamente C e non-C — allora la negazione del teorema è falsa perché contraddittoria. Quindi l’enunciato del teorema è necessariamente vero.

                              

20 risposte a "Teorema di Robinson"

  1. Ohi, ohi… All’università presi ad analisi matematica 28 per poi scendere a fisica e prendere 18. Dopodiché chiusi i libri che parlavano di ciò. Ora questo post mi mette in crisi. Comunque presumo tu sia un genio. Un caro abbraccio mio caro. Isabella

    Piace a 1 persona

    1. Un matematico americano (1911-1995), noto per i suoi numerosi studi sulla fondazione della matematica. Creò anche un’aritmetica (detta aritmetica di Robinson appunto) che soddisfa i requisiti minimi per far scattare un importante teorema che dice che, in matematica, ci sono verità per le quali non avremo mai una dimostrazione

      Piace a 1 persona

    1. Il teorema di Robinson vale per i linguaggi formalizzati, non stabilisce necessariamente alcun risultato per le persone :/
      Però sì, dal punto di vista della mera possibilità, se due persone hanno un punto in comune allora possono unirsi 🙂

      "Mi piace"

Scrivi una risposta a Ekpiresi Cancella risposta